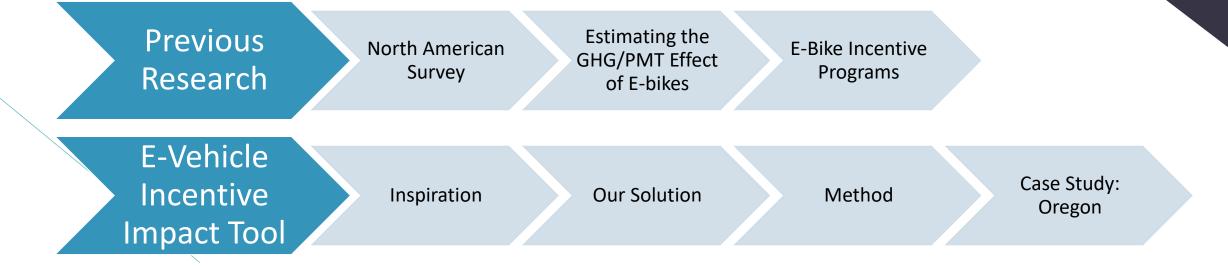


#### Assessing the CO<sub>2</sub> Reduction Impact of E-Bikes

Mike McQueen






#### About me

#### Michael McQueen

- Civil and Environmental Engineering Masters Student, PSU exp. 2020
  - Advisor: Kelly Clifton, PhD
- B.S. Mechanical and Aerospace Engineering, CWRU 2016
- Studying E-Bikes since 2018 with John MacArthur at TREC
- Research Interests: Transportation data, travel behavior, micromobility

### Agenda



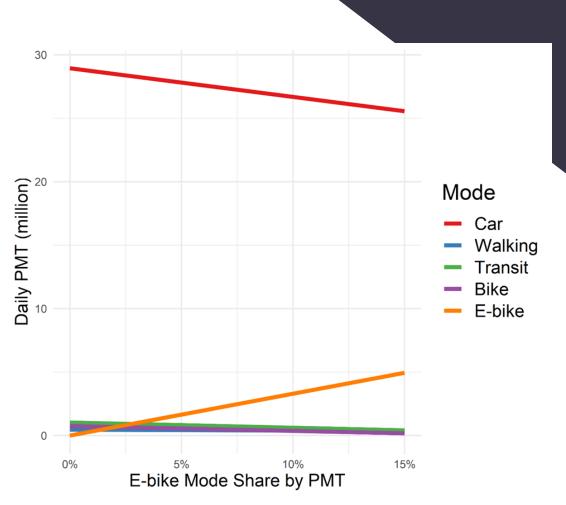


#### **Previous Research**

#### A North American Survey of Electric Bicycle Owners (2018)

- Increase cycling frequency
- Increase cycle trip distance
- Reduce impact of barriers
  - Hills
  - Bringing along cargo/children
  - Physical limitations (joint, respiratory, weight, dexterity)
  - Sweat
- Primary use cases (% of recorded trips):
  - Recreation or exercise (35.6%)
  - Commute (32.7%)
  - Personal errands (19.9%)
- Enhance perceived safety and joy of riding

Previous<br/>ResearchNorth American<br/>SurveyEstimating the<br/>GHG/PMT Effect<br/>of E-bikesE-Bike Incentive<br/>Programs






#### Estimating the Effect of E-Bikes on Person Miles Travelled and Greenhouse Gas Emissions (2019)

- 15% PMT mode share leads to 12% reduction in CO<sub>2</sub> emissions
  - 8,079 metric tons to 7,088 metric tons CO<sub>2</sub> per day
  - Portland Metro excluding Clark County
- 1 e-bike saves 225 kg CO<sub>2</sub> per year
- Unchanging when considering "induced trips"
- Car trip mode share would be reduced from 84.7% to 74.8%
- Car PMT would be reduced from 28.9M to 25.5M per day





#### How E-Bike Incentive Programs are Used to Expand the Market



- Partial purchase subsidies
  - Austin, TX
  - Burlington, VT
- Vendor-funded discounts
  - Boulder County, CO
- Employer Sponsored
  - UK
- Government Sponsored Loan
  - Scotland
- Experience-based education works
- Consider program partners strategically



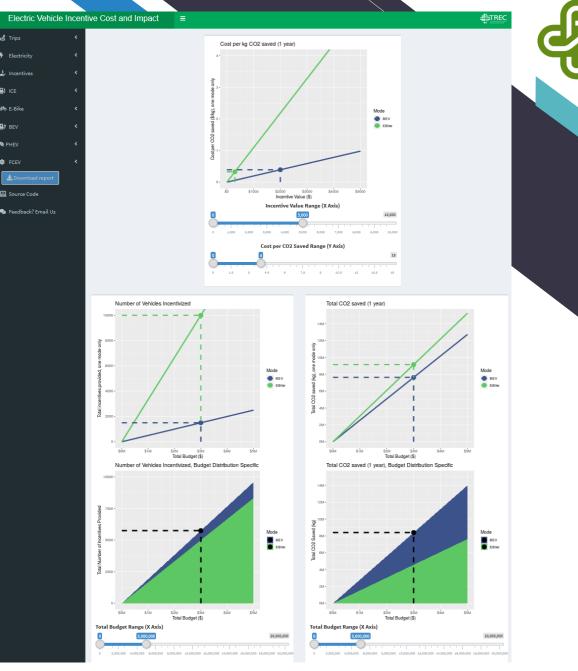
- Use preferred vendors
- Get creative with income streams





#### **E-Vehicle Incentive Impact Tool**

### Inspiration


- "The Case for a UK Incentive for E-Bikes" Newson and Sloman (2019)
- Provided a metric for "cost per kg saved" (\$/kg CO<sub>2</sub>)

"An e-bike grant scheme would be more than twice as effective, per pound spent, as the current grants offered to buyers of some electric cars"

• Could we calculate this for Oregon?

### **Our Solution**

- Online tool that anyone can use to estimate several things:
  - Cost efficiency (\$/kg CO<sub>2</sub>)
  - Total vehicles incentivized
  - Total CO<sub>2</sub> saved
- Exports a report that can be saved



🖁 Trips

🗱 E-Bik

DI BEV PHEV S FCEV

# ¢

#### Method

- 1. Calculate average ICE (gasoline) vehicle CO<sub>2</sub> emissions per year
- Calculate average CO<sub>2</sub> emissions from electricity generation for e-bike, BEV, PHEV, and/or FCEV based on local electricity profile
- 3.  $CO_2$  saved =  $CO_2_{,ICE} CO_{2,EV}$

(For E-Bike, we assume that the e-bike only replaces a portion of ICE miles. Default is 15%)





 Electricity
 Electricity Generation Attributes
 State CO2 emissions rate for electricity generation (lb/MWh)
 313
 Choose Preset:
 OR
 Apply Preset
 OR

| 🛃 Trips 🗸 👻                                    | -       |
|------------------------------------------------|---------|
| Car Trip Attributes                            | Ir      |
| Average Unique Trips per Day<br>per Automobile |         |
| 5.27                                           | A<br>(1 |
| Average Trip Length per Day<br>(mi)            | c       |
| 8.61                                           |         |
| Choose Preset:                                 |         |
| OR 🝷                                           |         |
| Apply Preset                                   |         |



E-Vehicle Incentive

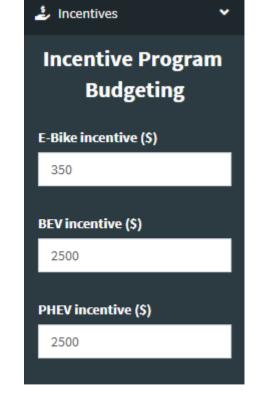
**Impact Tool** 

|                             | 💑 E-Bike                               | ~                | 💁 BEV 🗸                                      | • | N PHEV V                                      |
|-----------------------------|----------------------------------------|------------------|----------------------------------------------|---|-----------------------------------------------|
|                             | Electric Bicycles                      |                  | Battery Electric<br>Vehicles                 |   | Plug-in Hybrid Electric<br>Vehicles           |
|                             | Include Avg E-Bike Fuel Economy        |                  | Include                                      |   | Include                                       |
|                             | (kwh/100 mi)<br>1.91                   |                  | Avg EV Fuel Economy (kWh/100<br>mi)<br>30,73 |   | Avg E-Mode Fuel Economy<br>(kWh/100 mi)<br>35 |
|                             | E-Bike VMT Replacement Ratio           | D                | Choose Preset:                               |   | 35<br>Avg E-Mode Range (mi)                   |
|                             | Choose Preset:                         |                  | OR_Feb_20  Apply Preset                      |   | 30                                            |
|                             | VT_mix  Choose Preset Efficiency Level |                  | Apply riesel                                 |   | Avg ICE Fuel Economy (mpg) 41                 |
|                             | Low                                    |                  |                                              |   | Choose Preset:<br>OR_Feb_20                   |
| Inspiration Our<br>Solution | IVIEIDOO                               | ase Stu<br>Orego |                                              |   | Apply Preset                                  |



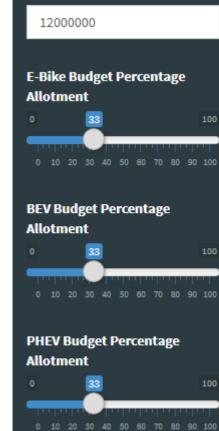
Our

Solution


Inspiration

Method

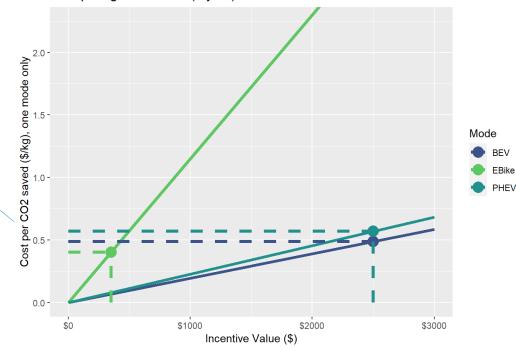
E-Vehicle


Incentive

**Impact Tool** 



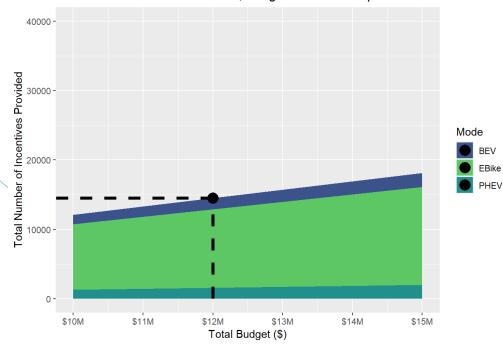
Case Study:


Oregon



Total budget (\$)

14


#### Cost per kg CO2 saved (1 year)



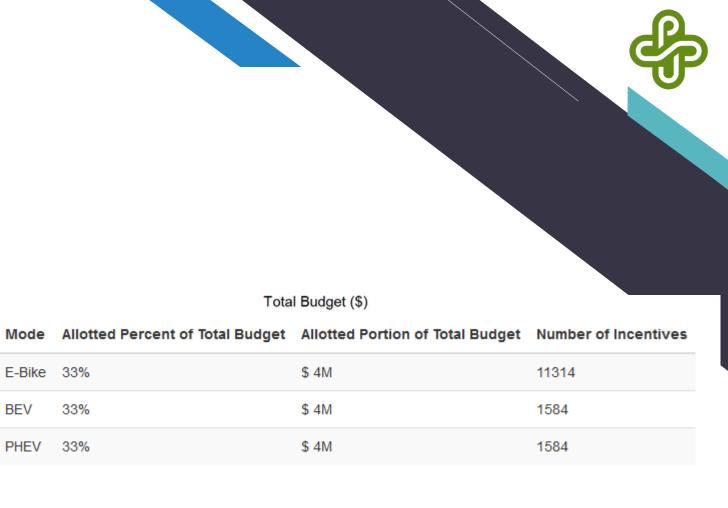
| Mode   | Incentive Amount | CO2 saved per vehicle, per year | Cost per kg CO2 Saved |
|--------|------------------|---------------------------------|-----------------------|
| E-Bike | \$ 350.00        | 869.36 kg                       | \$ 0.40               |
| BEV    | \$ 2500.00       | 5118.08 kg                      | \$ 0.49               |
| PHEV   | \$ 2500.00       | 4381.14 kg                      | \$ 0.57               |



Number of Vehicles Incentivized, Budget Distribution Specific

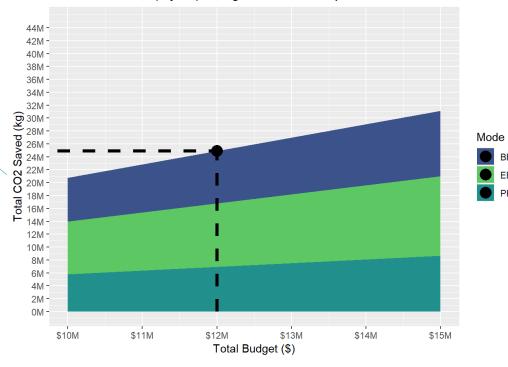


E-Bike


BEV

PHEV

33%


33%

33%





Total CO2 saved (1 year), Budget Distribution Specific



#### Mode Allotted Percent of Total Budget Allotted Portion of Total Budget Total CO2 Saved by this mode

| ode<br>BEV    | E-Bike | 33% | \$ 4M | 10.2M kg |
|---------------|--------|-----|-------|----------|
| EBike<br>PHEV | BEV    | 33% | \$ 4M | 8.5M kg  |
|               | PHEV   | 33% | \$ 4M | 6.8M kg  |







#### Thank You.

① Mike McQueen

mgm22@pdx.edu

## ¢

#### References

Blondel, B., Mispelon, C., & Ferguson, J. (2011). *Cycle more Often 2 cool down the planet!: Quantifying CO2 savings of cycling* (p. 16). European Cyclists' Federation.

Hollingsworth, J., Copeland, B., & Johnson, J. X. (2019). Are escooters polluters? The environmental impacts of shared dockless electric scooters. *Environmental Research Letters*, *14*(8), 084031. <u>https://doi.org/10.1088/1748-9326/ab2da8</u>

Kou, Z., Wang, X., Chiu, S. F. (Anthony), & Cai, H. (2020). Quantifying greenhouse gas emissions reduction from bike share systems: A model considering real-world trips and transportation mode choice patterns. *Resources, Conservation and Recycling, 153*, 104534. https://doi.org/10.1016/j.resconrec.2019.104534

Luo, H., Kou, Z., Zhao, F., & Cai, H. (2019). Comparative life cycle assessment of station-based and dock-less bike sharing systems. *Resources, Conservation and Recycling*, *146*, 180–189. <u>https://doi.org/10.1016/j.resconrec.2019.03.003</u>

MacArthur, J., Harpool, M., Scheppke, D., & Cherry, C. (2018). *A North American Survey of Electric Bicycle Owners*. Transportation Research and Education Center. <u>https://doi.org/10.15760/trec.197</u> McQueen, M., & MacArthur, J. (2020, June 29). Can Incentivizing Ebikes Support GHG Goals? Launching the New EV Incentive Cost and Impact Tool. *Transportation Research and Education Center News*. <u>https://trec.pdx.edu/news/can-incentivizing-e-bikes-support-ghg-</u> goals-launching-new-ev-incentive-cost-and-impact-tool

McQueen, M., MacArthur, J., & Cherry, C. (2019a). *How E-Bike Incentive Programs are Used to Expand the Market* [White Paper]. Transportation Research and Education Center, Portland State University. <u>https://trec.pdx.edu/research/project/1332/The\_E-Bike\_Potential: How\_E-</u>

Bikes Can Improve Sustainable Transportation

McQueen, M., MacArthur, J., & Cherry, C. (2019b). *The E-Bike Potential: Estimating the Effect of E-Bikes on Person Miles Travelled and Greenhouse Gas Emissions*. Transportation Research and Education Center (TREC). <u>https://doi.org/10.15760/trec.242</u>

Newson, C., & Sloman, L. (2019). *The Case for a UK Incentive for Ebikes* (No. 2; p. 25). Transport for Quality of Life Ltd. <u>https://www.bicycleassociation.org.uk/wp-</u> <u>content/uploads/2019/07/The-Case-for-a-UK-Incentive-for-E-bikes-</u> FINAL.pdf