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Background

Josh’s Background
• Travel, land use, air quality, and GHG modeling
• Traffic count program development
• Crash safety analysis 
• Public health analysis 

ODOT Role
• Active and Sustainable Transportation Research 

Coordinator
• Coordinate and conduct research
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Agenda

Count Program

Background/Objectives

Agenda

Why Count 
Nonmotorists?

Next Steps

Discussion & Questions

Data Fusion Modeling



Research Objectives
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Initial Objectives
• Assist Bend MPO in setting up multimodal traffic 

data collection system 
- Measure project success
- Plan for the future
- Prioritize maintenance activities and 
operations
           - Improve safety analysis

• Measure crash risk for all modes

High Level Objectives 
• Develop data collection system with ability to 

scale easily to other urban areas
• Make it simple and automated as possible
• Provide usable data for high end uses (planning 

modeling, KPM, health analysis)



Why Count Nonmotorized Traffic?

Invisible Traffic
• What’s not counted doesn’t 

count
• Short term counts not the whole 

picture

Highlighting Invisible Traffic
• 405K Vehicle Traffic (July)
• 41K Bike & Pedestrian Traffic

Modal Comparisons
• Segment mode share not a 

static property



Why Count Nonmotorized Traffic?

Social Equity
• Social justice implications for 

now accounting for 
nonmotorized traffic activity



Count Program Overview

Field Staff Data Entry Cloud Based Data Storage Data VisualizationCounts Processor in R 
(CPiR)

Eco Counter 
Counts Database

Count Station 
Spatial Data

Google Sheet
Repository

Deployment 
Picture



Count Program Overview

Count Station 
Spatial Data

Counts Processor in R 
(CPiR)

Eco Counter 
Counts Database

Google Sheet
Repository

Deployment 
Picture

Step 3 QA/QC 
Check

Step 1 Raw 
Data Retrieval

Step 2 Data 
Preprocess

Step 4 Annual 
Estimation

• Pull data
• Assign temporal and spatial info

• Assign detailed spatial data
• Process portable sites
• Split user counts 

• Assign error flags

• Daily count imputation
• Annual estimates applying Doy factors



We Have Counts Data….Now What?

Goal
• Estimate activity across the 

network

Issue: Limited Spatial Resolution
• 56 - 94 sites 

Solution: Model traffic 
• Use relationships between land 

use, accessibility and network 
features and counts 

• Parametric vs. machine 
learning approaches



Data Fusion with Machine Learning 

What is Machine Learning?
• Algorithms that find and apply 

patterns in data (MIT 
Technology Review)

• Many different types for 
different purposes 

• Classification vs. Regression

• Supervised vs. Unsupervised



Data Fusion with Machine Learning 

Typical Uses
• Marketing, genetic 

research, physics, social 
media, and transportation!

Selected Methods
• Negative Binomial 

Regression 

• Decision Tree

• Random Forest



Cross-Validation

Cross Validation
• Divide data into training 

and testing sets

• Training data for 
estimating model

• Testing data for 
determining accuracy of 
model

• Performed many times to 
ensure model stability

Estimate 
Machine 
Learning 
Algorith

m

Apply 
Machine 
Learning 
Algorith

m

Oregon 
Bike/Ped 

Count 
Data

Training 
Data
80%

Testing 
Data
20%

Compare 
with Test 
Data & 

Compute 
Error



Network Modeling – Data Fusion

What is a model?
• Representation of a thing or 

phenomenon useful for 
understanding and decision 
making

• Performance of a model depends 
on uses and decisions being made

• “All models are wrong, some are 
useful”

• Data driven models allow us to 
put our assumptions on the table

Travel models poor tools for 
nonmotorized transportation
• Travel surveys collect limited 

information on nonmotorized
• Assignment procedures make 

oversimplified assumptions
• No bike/ped counts to calibrate to 

anyway
• TDMs been a little tyrannical 

What 
is 

this?Are 
pedal

s 
broke

n?

Do 
the 

pedal
s 

work?
Is 

chain 
greas
ed?

Much 
better 

but 
model 

could be 
better



Network Modeling – Data Fusion

Objective
• Activity estimates 

for entire network 
Uses
• Planning, 

monitoring, crash 
analysis

Methods
• Merges data from 

multiple features 
and apply machine 
learning or 
statistical model

Output
• Quantifying total 

network activity
• Crash analysis input
• Health analysis 

input



Network Modeling – Data Fusion

User Types
• Vehicle
• Bicycle 
• Pedestrian

Data 
• Network 

characteristics
• Accessibility
• Centrality
• Probes

Methods
• Random forest and 

XgBoost

Output
• Quantifying total 

network activity
• Crash analysis input
• Health analysis 

input



Access to 
Jobs 

Network 
Centrality

Access to 
People

Traffic 
Counts

Estimated 
AADT

Network 
Features

Vehicle AADT Data Fusion Scheme

• Vehicle Model Objectives
o Validate data fusion 

approach
o Provide network wide 

estimates of vehicle traffic

• Data and Models Used
o Up to 433 data features in 

some specs
o XgbBoost & Random 

Forest
o Census, TAZ, properly 

attributed routable 
network

• Validation
o Internal 10-fold cross 

validations (random 
partitions)

o External 10-fold (stratified 
 partition)

o Leave-one-out validation
o Comparison with 

Federally reported data 
(HPMS)



• Vehicle Model Data
o Traffic Counts 

o 2018 & 2019
o N = 255 

o Network Features
o Functional 

classification
o Posted speed limit

Vehicle AADT Model Data



• Vehicle Model Data
o Traffic Counts 

o 2018 & 2019
o N = 255 

o Network Features
o Functional 

classification
o Posted speed limit

o Accessibility (drive 
time)
o Jobs 
o People

Vehicle AADT Model Data



• Vehicle Model Data
o Traffic Counts 

o 2018 & 2019
o N = 255 

o Network Features
o Functional 

classification
o Posted speed limit

o Accessibility
o Jobs 
o People

o Centrality
o Measures link 

importance

Vehicle AADT Model Data
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• 10-fold Cross-validation
o Multiple specifications tried 

– local and federal fc
o Prediction error varies by 

volume bin 
o Overall 254% error
o 25% median error for volume 

bins 5K and greater

Vehicle AADT Model Validation



• Network wide estimates
o High volume roads appear 

reasonable
o Low volume local streets 

appear overestimated

Vehicle AADT Model Results



• Comparison with HPMS
o Overall VMT estimate within 

6% (model over estimates)
o Model approaches provide 

reasonable system level 
estimates

o Principal arterial highest 
error at 10% for ML

o Collector & Min. Art. 
Highest error for Neg. Bin

Vehicle AADT Model Results Comparison



• Comparison with HPMS
o Subset models are randomly 

partitioned into 3 datasets
o Models within 3% to 14% 

compared to HPMS
o Collectors perform poorly, 

likely due to small number of 
observations in training data

o Vehicle Model Conclusions
o Approach performs well for 

aggregate and slightly 
disaggregate

o Subset models improve 
confidence in 

o Disaggregate level useful in 
planning applications (& 
crash analysis?)

o Results for each year 
available

o Probe data will vastly 
improve approach (coming?)

Vehicle AADT Model Results Comparison



Bicycle AADT Data Fusion Scheme

• Bicycle Model 
Objectives
o Provide network wide 

estimates of bicycle 
traffic

• Data and Models Used
o Up to 516 data features 

in some specs
o XgbBoost & Random 

Forest
o Census, TAZ, properly 

attributed routable 
network, and probe data

• Validation
o Internal 10-fold cross 

validations (random 
partitions)

o External 10-fold 
(stratified  partition)

o Leave-one-out 
validation



• Bicycle Model Data
o Traffic Counts 

o 2017, 2018 & 2019
o N = 94 

o Network Features
o Functional 

classification
o Posted speed limit
o Bicycle facility type

Bicycle AADT Model Data



• Bicycle Model Data
o Traffic Counts 

o 2017, 2018 & 2019
o N = 94 

o Network Features
o Functional 

classification
o Posted speed limit
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• Bicycle Model Data
o Traffic Counts 

o 2017, 2018 & 2019
o N = 94 

o Network Features
o Functional 

classification
o Posted speed limit
o Bicycle facility type

o Centrality
o Commute 
o Recreational

o Accessibility (distance)
o Jobs 
o People

Bicycle AADT Model Data

Bicycle 
Centrality

Vehicle 
Centrality



• Bicycle Model Data
o Traffic Counts 

o 2017, 2018 & 2019
o N = 94 

o Network Features
o Functional 

classification
o Posted speed limit
o Bicycle facility type

o Accessibility (distance)
o Jobs 
o People

Bicycle AADT Model Data

Bicycle 
Access

Vehicle 
Access



• Bicycle Model Data
o Traffic Counts 

o 2017, 2018 & 2019
o N = 94 

o Network Features
o Functional 

classification
o Posted speed limit
o Bicycle facility type

o Centrality
o Commute 
o Recreational

o Accessibility (distance)
o Jobs 
o People

o Probe Data
o Strava 
o 2017-2019 data

Bicycle AADT Model Data



• 10-fold Cross-validation
o Multiple specifications 

tried – without Strava and 
with 

o Overall 43% error (All + 
Strava model)

o Prediction error varies by 
volume bin 

o Low Volumes makes 
modeling a challenge

o Probe data helps in 
accuracy (but even more 
in application)

Bicycle AADT Model 
Validation



• Network wide estimates
o Looks reasonable, but 

how to tell?
o Activity concentrated 

near employment centers
o Appears to estimate too 

much bike activity in low 
density residential areas

• Handling Lack of Zero 
Counts
• Random selection of 

streets high likelihood 
of zero bike traffic

• Criteria: local street; 
low population;  
density; low 
centrality, no Strava, 
no bike facility

Bicycle AADT Model Results



• Handling Lack of Zero 
Counts
• Random selection of 

streets high likelihood 
of zero bike traffic

• Criteria: local street; 
low population;  
density; low 
centrality, no Strava, 
no bike facility

• Results
• Moderates volume 

well in expected areas
• Significantly 

decreases overall 
BMT

Bicycle AADT Model Results



Pedestrian AADT Data Fusion Scheme

• Pedestrian Model 
Objectives
o Provide network wide 

estimates of pedestrian 
traffic

• Data and Models Used
o Up to 512 data features 

in some specs
o XgbBoost & Random 

Forest
o Census, TAZ, properly 

attributed routable 
network, and transit data

• Validation
o Internal 10-fold cross 

validations (random 
partitions)

o External 10-fold 
(stratified  partition)

o Leave-one-out 
validation



Pedestrian AADT Model Data

• Bicycle Model Data
o Traffic Counts 

o 2017, 2018 & 2019
o N = 56 

o Network Features
o Functional 

classification
o Posted speed limit
o Off street system

o Centrality
o Commute 
o Recreational
o Shortest

o Accessibility (distance)
o Jobs 
o People

o Transit Stop Access
o Ridership would be 

bette



• 10-fold Cross-validation
o Multiple specifications 

tried – without Strava and 
with 

o Overall 57% error
o Prediction error varies by 

volume bin 
o Low volumes makes 

modeling a challenge
o Probe data helps 

(surprisingly)

Pedestrian AADT Model 
Validation



• Network wide estimates
o Looks reasonable, but 

how to tell?
o Activity concentrated 

near employment centers
o Appears to estimate too 

much bike activity in low 
density residential areas

• Handling Lack of Zero 
Counts
• Random selection of 

streets high likelihood 
of zero bike traffic

• Criteria: local street; 
low population;  
density; low 
centrality, no Strava, 
no bike facility

Pedestrian AADT Model 
Results



Data Fusion Wrap-up

Limitations
• Need more counts
• Input features not all 

concurrent with counts 
(population & 
employment)

• No probe data for vehicles 
(or ped specific)

• Feature space could be 
reduced

Conclusions
• Information from models 

can inform multiple 
purposes

• More counts will improve 
the model

• Future discussions needed 
to determine further 
applications
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Research Project Next Steps
Short term
- Crash data analysis – TAC meeting # 4
- Transfer data processing and related knowledge to Bend area staff
- Provide ongoing tech support for CPiR 
- Develop useful data visualizations and data access
- NITC Pooled Fund December 2020

Longer term
- Statewide data support (centralized repository, QAQC) – many pathways to 

statewide program
- Institutionalize data fusion models for monitoring  planning (incorporate NITC 

results) 
- Pilot in another Oregon urban area
- UMD and I-95 Corridor Coalition (RITIS?)
- Better prepare for third-party platform offers – more evaluations of products (e.g. 

Streetlight Data evaluation )
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Final Report (June/July 2020)

Deliverable Description Intended 
Audience

Data 
Collection 

Describes the equipment and 
data collection strategy 

employed in this research

Data Program 
Managers; Data 
Collection Staff 

and 
Contractors

Annual 
Traffic 

Estimatio
n

Develops and applies a new 
method for creating annual 
estimates of bicycle counts 

from daily counts

Data Program 
Managers; 

Safety Analysts

Total 
Bicycle 
Activity 

Estimatio
n

Application of statistical models 
using annual bicycle counts and 

various infrastructure, 
accessibility and connectivity 

variables to estimate total 
Bicycle/Pedestrian miles traveled 

(BMT)

Transportation 
Analysts; 
Modelers; 
Planners

 Crash 
Analysis

 Employs bicycle miles traveled 
in crash analysis to assess risk 

and develop safety performance 
functions and (SPF)crash 

modification factors (CMF) 

Safety 
Analysts; 

Engineers; 
Planners



National Institute of Transportation & Communities Pooled Fund

Objective
• Develop acceptance 

criteria for 3rd party 
data

• Activity estimates 
for entire network 
(just bikes)

Partners
• Oregon (Bend 

MPO, Central Lane 
MPO, PBOT, 
ODOT)

• Colorado DOT
• Virginia DOT
• Utah DOT
• DCDOT



Questions
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Questions?

Josh Roll Active and 
Sustainable Transportation 

Research Coordinator
Josh.F.Roll@ODOT.state.or.us

mailto:Josh.F.Roll@ODOT.state.or.us


Back up



Traffic Data Imputation - What’s the Problem? 

Why Missing Data?
• Equipment failure at 

permanent sites (bugs!)
• Data Transfer Issues

Solution:
• Traffic variation highly 

dependent on weather and 
day of week factors 

• (Hanson and Hanson 1977; 
Niemeier 1996; Nankervis 
1999;Richardson 2000; 
Brandenburg 2007; Rose et 
al. 2011; Tin Tin et al. 2012, 
Thomas, Jaarsma, and 
Tutert 2009; Lewis     
2011;Gallop, Tse, and Zhao 
2012; Miranda-Moreno and 
Nosal 2011; Nosal and 
Miranda-Moreno 2012; 
Schmiedeskamp and Zhao 
2016).



Daily Imputation and Annual Estimation

Results by Months Used
• More months of data 

equals better results
• Likely scenario is 3 

months or less of missing 
data

• 2-10% error when 9 
months of data used

Limitations
• Only using 1 year of data 

but results would be better 
if multiple years of data 
are used

• Negative Binomial does 
poorly when data poor



Wait what is Machine Learning Again?

Tree Split Stopping Rules/Criteria
• Guided by rules of impurity 

reduction with an aim of creating 
daughter nodes more pure than 
parent nodes

• Impurity quantified by GINI Index 
or Shannon Entropy

• Given a minimum # of observations 
left in node

Traffic Count Imputation Example
• TMAX – most important
• Weekday variable – also important
• Minutes of daylight – also important

Ensembles
• Example is single tree
• Multiple trees estimated 
• Combined to create a forest! 

Mean 
Count

Number 
Observatio

ns

Node 
ID

% of 
Node 
Split

Node 
Key



Daily Imputation and Annual Estimation

Data
• 21 unique locations from 

statewide data 
• All sites have at least 98% 

of annual data

Imputation
• Machine learning (random 

forest, conditional 
inference, recursive 
partitioning)

• Negative binomial 
regression

Test setup
• Use permanent counters 

from around the state
• Hold out all possible 

combinations of month
NOAA Data



Why Machine Learning?

Why Machine Learning?
• Negative Binomial 

Regression used 
previously (SARM) 
Roll and Proulx 
2017

• Shown to predict 
annual traffic within 
5% with just 3 weeks 
of counts

• But how to select 
best model?

• Interaction effects 
better captured in 
ML



Daily Imputation and Annual Estimation

Imputation
• Machine learning (using 

recursive partitioning 
regression trees, random 
forests, conditional 
inference)

• Negative binomial 
regression

Test setup

• Use permanent counters 
from around the state

• Estimate daily traffic 
counts

• Hold out all possible 
(4,096) combinations of 
month

• Measure monthly and 
annual error

Jan Feb
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c
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v
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p
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g
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Test 
Data

Train 
Data

Jan Feb
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c
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c
No
v

Oct
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Test 
Data

Train 
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Test 1

Test 2

Test 
4096

…
…
…



Daily Imputation and Annual Estimation

Results
• 3 levels of estimation 
• Bikes – Random Forest 

works best
• Peds – Close tie between 

negative binomial and 
random forest

Test setup

• Use permanent counters 
from around the state

• Hold out all possible 
combinations of month



Daily Imputation and Annual Estimation

Results by Months Used
• More months of data 

equals better results
• Likely scenario is 3 

months or less of missing 
data

• 2-10% error when 9 
months of data used

Limitations
• Only using 1 year of data 

but results would be better 
if multiple years of data 
are used

• Negative Binomial does 
poorly when data poor



Variable Importance 

What Variables Are Important in 
ML Algorithm?
• Inference generally a 

limitation of ML
• But variable importance can 

be calculated (at 
computational cost)

• Measure of node purity 

Variable Importance Results
• Temperature importance in 

all models
• Precipitation and daylight 

next most important 



• Handling Lack of Zero 
Counts
• Random selection of 

streets high likelihood 
of zero bike traffic

• Criteria: local street; 
low population;  
density; low 
centrality, no Strava, 
no bike facility

• Results
• Moderates volume 

well in expected areas
• Decreases overall 

BMT by about 1/3 

Bicycle AADT Model Results
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