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Goal

• Two major areas of traffic forecasting:
§ Demand modeling (number of trips between O-D pairs)
§ Travel-time estimation (travel time between O-D pairs)

• Due to data availability, there is more research on freeways than on arterials.
§ Many sources but sparse.

• Goal: Develop a method to leverage open (sparse) data sets to estimate 
arterial  street-level travel times on a metropolitan road network.
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Data Sources

Uber Movement
• Summary statistics of Uber trips 

between traffic analysis zones 
(TAZ)

• movement.uber.com

OpenStreetMap
• Graph representation of road 

network with intersections and road 
segments represented as vertices 
and edges

• openstreetmap.org

Road network for 27 TAZs in 
downtown Los Angeles

https://movement.uber.com/%3Flang=en-US
https://openstreetmap.org/
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Edge Travel-time Estimation
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Solutions:
x = 12, y = 1,   z = 12
q = 1,   y = 11, p = 1
y = [ 1, 11 ]

𝑏! = 2



Edge Travel-time Estimation
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x + y + z = 25
p + z = 6
q + y + p = 13

𝑁 # of trips                # of equations  

𝑀 # of road segments               # of variables

A B C D E F
A 9 20 25 10 21
B 11 16 1 12
C 5 12 1
D 17 6
E 13
F Solution: x = 9, y = 11, z = 5, p = 1, q = 1

𝑆!𝑡 ≈ 𝑦



Edge Betweenness (𝑏𝑐) Centrality

The betweenness of an edge is the number of shortest paths that go through it 
for all possible vertex O-D pairs.

Types of roads based on betweenness centrality 
(bc) and degree (kroad). (Source: Wang et al. Sci. 
Reports, 2012, 2, 1001) 
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Project Workflow

Download data from
Uber Movement and
OpenStreetMap

Preprocessing:
- Assign vertex TAZs
- Assign edge free-flow 

travel times 𝑓

Initialization:
- Edge travel times 𝑡! = 𝑓
- Weight parameter 𝜆! = 1

Simulate trips between TAZs:
- Sample vertex O-D pairs
- Compute shortest paths 

between vertices 𝑆"
- Sample travel times 𝑦"

Estimate edge travel times by solving 
constrained least-squares problem:
�̂� = argmin!.$%&'&(.)*'! 𝑆"+𝑡 − 𝑦" )

)

Update edge travel times 
and weight parameter:
𝑡",( = 1 − 𝜆" 𝑡" + 𝜆"�̂�
𝜆",( = 0.9𝜆"

𝑡",( − 𝑡" )
)

|𝐸|
≤ 𝛿

Output edge 
travel times 𝑡",( Yes

No



16

Experimental Results

We estimated edge travel times for downtown LA graphs using
• Different times of day:

§ 3am = 507,449 TAZ O-D pairs
§ 6pm = 1,115,432 TAZ O-D pairs

• Different graph sizes:
§ 1-mile (𝑀 = 7,138), 2-mile (𝑀 = 22,756) and 3-mile radii (𝑀 = 40,929)

• Different number of sampled trips:
§ 𝑁 = 1,000, 3,000, and 5,000

Error measured by 𝜖# = ⁄$ %∑ &,( ∈𝒰! 𝑛&( log 𝑔&((𝑡#) − log 𝐺&(
+
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Experimental Results: Convergence
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Initial Results on metro-scale estimation
• LA and associated Metro Areas (160k intersections / 470k links – no sparsification):

§ Total coverage - Approx. 1200 sq. mi
§ 64 chunks @ approx. 20 sq. mi. per chunk
§ Total running time on a single (8-core) server node : 18.5 hours per hourly window
§ With 64-node cluster ~ Approx. 25 mins (including serial overhead)

• Seattle and associated Metro areas ( / 160k links – no sparsification)
§ Total coverage – Approx. 500 sq. mi
§ 16 chunks @ approx. 30 sq. mi per chunk
§ Total running time on a single (8-core) server node : 5.00 hours per hourly window
§ With 16-node cluster ~ Approx. 20 mins (including serial overhead)

• Current approach cannot be used to drive-down chunk sizes as it affects accuracy
§ Imposes a limit on scaling gains
§ Projections for a 64-node cluster (12K Processors) are of about 30 mins (including overhead) 
§ Potential areas of performance improvement: Python code, constrained least squares solver



21

Visualization of congestion on LA metro-area map
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• Results at 6pm on a weekday
• Known congestion areas

correctly identified

Long beach

Pasadena

Downtown LA
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Visualization of congestion on Seattle metro-area

Redmond

Seattle 
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• Weekday
• OpenStreet Map
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Time evolution of the Seattle network 4pm-6pm

4pm 5pm 6pm

Increase in traffic congestion à larger travel times in congested arterials
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Graph Pseudo-Sparsification

Edges with lower betweenness are more likely to have estimated travel times 
closer to their free-flow travel times.

Impact of using the 25% betweenness percentile as sparsification threshold

𝑞 =
𝑡 − 𝑓
𝑓
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Graph Pseudo-Sparsification: Method

Download data from
Uber Movement and
OpenStreetMap

Preprocessing:
- Assign vertex TAZs
- Assign edge free-flow 

travel times 𝑓

Initialization:
- Edge travel times 𝑡! = 𝑓
- Weight parameter 𝜆! = 1

Simulate trips between TAZs:
- Sample vertex O-D pairs
- Compute shortest paths 

between vertices 𝑆"
- Sample travel times 𝑦"

Estimate edge travel times by solving 
constrained least-squares problem:
�̂� = argmin!.$%&'&(.)*'! 𝑆"+𝑡 − 𝑦" )

)

Update edge travel times 
and weight parameter:
𝑡",( = 1 − 𝜆" 𝑡" + 𝜆"�̂�
𝜆",( = 0.9𝜆"

𝑡",( − 𝑡" )
)

|𝐸|
≤ 𝛿

Output edge 
travel times 𝑡",( Yes

No



28

Summary and Future Work

§ Leveraged coarse-grained Uber Movement data in the form of TAZ O-D 
pair summary statistics to provide estimates of fine-grained, street-level 
travel times.

§ Solved Large metropolitan areas like Los Angeles and Seattle.

§ Implement  HPC based software for (near)real time estimation. 

§ Include Multi-Modal information: bi-cycles, bus, peds, etc.

§ Open source the software with Laptop/Cloud/Supercomputer support.



Thank you
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